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Abstract

In the last years, machine learning moved from a niche to mainstream in computer science due to the
increase in stored data. Machine learning (ML) promises to gain value from data, e.g., to make predictions
or to detect patterns in data. More and more, the academic curricula of computer science reflect the
increasing importance of machine learning. Universities offer many different courses in data science
and machine learning where students learn different approaches to machine learning. In this paper, we
give a concise introduction to Bayesian machine learning. The Bayesian approach has some principled
advantages such as naturally handling uncertainty and preventing overfitting. For studying, we have
developed many exercises which are referenced in this introduction. For didactic reasons, we use simple
examples for illustrating the concepts, e.g., the Binominal distribution and (Bayesian) linear regression.
We also describe how Bayesian methods are related to graphical models, probabilistic programming and
deep learning.

I. Introduction

We are entering a data area. Nowadays, large data sets can be stored on commodity hardware
which results in a massive decrease in storage costs. Methods for gaining value for such data
become more and more critical. Machine learning promises to generate such values by learning
prediction models from data. Software-libraries provide standard machine learning algorithms
such a logistic regression, support vector machines and simple neural networks out-of-the-box. So
they can easily be trained and used in production for simple problems.

More complicated problems require specialized models which must be designed for the
problem at hand. Model-based machine learning offers a framework for modeling, learning, and
inference in such models. Such models correspond to graphical representations which are called
probabilistic graphical models [9]. For modeling, we focus on directed graphical models. In such
models are Bayesian methods typically used for inference. However, Bayesian methods are a
fundamental approach for data analysis and statistics. Bayesian methods have the advantage to
mitigate overfitting and naturally handle uncertainty. They give a probability distribution over
the predicted values. From these it can be easy concluded how confident the prediction is. Such
confidence estimation is essential for critical applications, e.g., in medicine or autonomous driving.

Recently, researchers invented black-box inference for Bayesian methods. Without a black-box
solver, it is necessary to implement an inference algorithm for the particular problem at hand. So
in the past, only experts knew to implement such solutions. With black-box inference, machine
learning developers now have the potential to develop solutions based on Bayesian methods.
Based on black-box inference, probabilistic programming languages were invented to support the
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development process. In probabilistic programming, the developer (or researcher) can mainly
focus on the modeling part by using a developer-friendly API. Still, it is essential to understand
how inference works, e.g., for tuning scalable solutions or understanding the limitations.

A key trend in machine learning is deep learning. In contrast to traditional machine learning,
features are learned from data and are not engineered by experts. The most prominent models
are (deep) neural networks. Neural networks are typically trained with the frequentist approach,
see section iii. However, Bayesian methods can also be used to train neural networks or to design
neural network autoencoders VI.

This paper gives the reader a guide to gain knowledge about Bayesian methods. Notably,
we give pointers to exercises which we have developed for studying. We believe that seriously
studying for a deep understanding cannot be done without practice. Practicing in this context is
solving mathematical exercises and implementing corresponding code, e.g., algorithms. Therefore
most exercises are of such a mixed type. Bayesian methods are an advanced topic of machine
learning, and their study requires a strong background in machine learning. So we assume that
the reader has such a background. In section II we describe the prerequisite compactly and give
links to appropriate exercises. In the next section III, the principle of Bayesian data analysis is
derived from Bayes rule, and the principal difficulty of Bayesian analysis is explained. In section IV
some methods are presented which overcome the difficulties. We focus on such methods which
are used for probabilistic programming. In section V we describe how Bayesian inference is eased
by probabilistic programming. One goal of the paper is to prepare the reader for recent research
literature in the field of Bayesian (deep) learning. In section VI we present examples of such
neural networks. The complete content including the material of the exercises is equivalent to a
one-semester master course for students with appropriate background in machine learning.

The exercises are based on jupyter notebooks [8]. In the exercises, we give mostly a summary
of the prerequisite knowledge. Also, there are pointers to the literature for further self-study.

A complete list of all in this paper referenced exercises is given on the following web page:
https://www.deep-teaching.org/courses/bayesianLearningListOfExecises

II. Prerequisite

Before we start with the fundamentals of Bayesian data analysis, we need some basic concepts and
definitions of key technical terms. Here we assume that the reader has a fundamental background
in machine learning, probability theory, and statistics.

In the following, we recapitulate some of the basics which are especially crucial for Bayesian
learning.

i. Independent and identically distributed data

Unless otherwise stated, we assume that the data D = {x1, x2, . . . , xn} (resp. for supervised
learning D = {(x1, y1), (x2, y2), . . . , (xn, yn)} ) is independent and identically distributed ( i.i.d.):

• Independent means that the outcome of one observation xi does not effect the outcome of
another observation xj for i 6= j.

• The data is identically distributed if all xi’s are drawn from the same probability distribution.
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ii. Statistics and estimators

A statistic is a random variable S that is a function of D, i.e.

S = f (D)

. An estimator θ̂ is a statistic used to approximate the (true) parameters θ that determine the
distribution of data D. The variance of an estimator is defined by

var(θ̂) := ED [θ̂
2]− (ED [θ̂])

2. (1)

The subscript D on the expection ED indicates that the expectation is with respect to all possible
data sets D. The bias of an estimator is defined as

bias(θ̂) = ED
[
θ̂
]
− θ.

A statistic S is sufficient if p(θ̂ | D) = p
(
θ̂ | S(D)

)
. All necessary information for the estimation of

the parameters is compressed in the sufficient statistic.
For exercises, see exercise-expected-value, exercise-biased-monte-carlo-estimator, and exercise-

variance-dependence-on-sample-size.

iii. Kullback-Leibler Divergence

The Kullback Leiber (KL) divergence is a measure how (dis)similar two probability distributions
are. For probability mass functions q(X) and p(X) the KL-divergence is defined as 1: y

DKL(q(X) || p(X)) = ∑
x∈val(X)

q(x) log
p(x)
q(x)

(2)

val(X) are the possible values of the random variable X. We encourage the reader to study
exercise-kullback-leibler-divergence.

iv. Directed Graphical Models

For modeling, we use the notation of directed graphical models (Bayesian networks). In a
probabilistic graphical model (conditional) independence properties are encoded in the graph [9].
In other words a graphical model is a map of independencies (i-map). In directed graphical
models, there is a set of factors corresponding to conditional probabilities for each variable. The
connection between the variables is represented by a directed acyclic graphs (DAG)2. In figure 1
we give a simple example for a directed graphical model. For exercises to Bayesian networks, see

• exercise-bayesian-networks-by-example
• exercise-forward-reasoning-probability-tables
• exercise-d-separation

1For probability density functions the sum must be replaced by an integral.
2For a short summary (in German) of Bayesian networks, see http://christianherta.de/lehre/dataScience/

bayesian_networks/Bayessche_Netze_Repraesentation.html
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Figure 1: Example of a directed graphical model. A directed graphical model corresponds to a factorization of the joint
probability of the random variables (nodes in the graph). Here the join probability is factorized according to
P(A, B, C, D) = P(A)P(B)P(B | A)P(D | C, B). If a probability factor of a random variable is conditioned
on other variables an corresponding edge in the graph exists.

III. Fundamentals of Bayesian analysis

i. Bayes Rule

In the training phase the parameters of a model are learned by training data D. The criteria for
the learning process can be derived from Bayes rule for data D and parameters θ:

p(θ | D) = p(D | θ)p(θ)
p(D) (3)

In Bayesian data analysis the continuous parameters θ of a model are described by probability
density functions. Because of the importance of Bayes rule the individual factors in equation 3
have names:

• p(θ | D) is called the posterior (distribution).
• p(D | θ) is the likelihood. Typically, the likelihood is considered as a function of θ, i.e.
`(θ) = p(D | θ). Note that `(θ) is not a probability distribution with respect to θ.

• p(θ) is the prior. This distribution describes the prior knowledge (or belief) about θ before
taking the data D into consideration.

• The denominator on the right side p(D) is the marginal likelihood or evidence. In practice,
the denominator p(D) =

∫
Θ p(D | θ)p(θ)dθ is often computationally untractable. Different

methods were developed to handle this issue, see section IV.

We provide an exercise for studying Bayes rule exercise-bayes-rule.
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ii. Prediction

To predict new data D̄ 3 based on the training data D we have to average the preditions p(D̄ | θ)
weighted by the posterior p(θ | D)

p(D̄ | D) =
∫

Θ
p(D̄, θ | D)dθ (4)

=
∫

Θ
p(D̄ | θ,D)p(θ | D)dθ (5)

=
∫

Θ
p(D̄ | θ)p(θ | D)dθ (6)

Θ = {θ | P(θ | D) > 0} is the support of P(θ | D). From line 5 to 6 the conditional independence
property D̄ ⊥ D | θ was used.

iii. Maximum Likelihood Estimation (ML)

In comparision to Bayesian data analysis in a frequentist approach the parameters θ are estimated
by fixed values (point estimates), i.e. they are not described by probability distributions. Typically
θ is estimated by maximizing the likelihood `(θ), i.e. by θ̂ML = arg maxθ `(θ). This is equivalent
to minimizing the negativ log-likelihood log `(θ) = L(θ)

θ̂ML = arg max
θ

`(θ) = arg min
θ

(−log (`(θ))) = arg min
θ

(−L(θ)) (7)

As simple example we consider the Binomial distribution. From n identical Bernoulli trials with
possible outcomes xi = {0, 1} we get some data, e.g. D = {0, 1, 1, . . . }. From the data we want to
estimate the parameter θ. Here θ is the probability of a positive outcome X = 1 of a Bernoulli trial.
From the data we can compute a sufficient statistics which holds the same information about θ as
D. The suffient statistics for the Bernoulli distribution is the number of sucesses (1’s) k and the
number of trials n. The probability for k-sucesses is given by

P(k | θ) =

(
n
k

)
θk(1− θ)n−k (8)

If we consider this as a function of θ we get the likelihood. For the maximum-likelihood estimation
for the Binomial distribution we have:

arg min
θ

(−logL(θ)) = arg min
θ
− log

((
n
k

)
θk(1− θ)n−k

)
A necessary condition for the minimum is that the first derivative is zero:

0 =
d
dθ

(
θk(1− θ)n−k

)
= kθk−1(1− θ)n−k − (n− k)θk(1− θ)n−k−1

So the maximum likelihood estimator is θ̂ML = k
n . For an exercise to maximum-likelihood on the

Gaussian distribution see exercise-univariate-gaussian-likelihood.
Another point estimate is given by the maximization of the posterior of equation 3 ( maximum

a posterior - MAP). Note that the denominator is constant with respect to (w.r.t.) θ. Therefore
for maximization, it is sufficent to consider only the prior and the likelihood. In log-space the

3An analog expression for supervised learning p(ȳ | D, x̄) =
∫

p(ȳ | x̄; θ)p(θ | D)dθ can be derived from the conditional
independencies.
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Figure 2: Example of a simple hidden variable model: For each observed variable Xi = xi there is a hidden variable Zi.

prior and the likelihood are added. E.g., for learning a linear regression (or neural networks
regression) the Squared error loss correspond to the log-likelihood and the L2-regularization term
to a Gaussian log-prior. We provide exercise-linear-regression-MAP for studying the derivation in
detail.

iv. Hidden variable models, expectation maximization and variational lower
bound

Bayesian networks can contain unobserved variables. Sometimes we are interested in the distri-
bution of such variables when we observe other variables in the graph. As example consider a
mixture of two Gaussians 4 with indices z = 1 respectivly z = 2. Each of the Gaussians has two
parameter (µz, σ2

z ) with z ∈ {1, 2}. Given some i.i.d. training data D = {x1, . . . , xn} we want to
estimate the parameters θ = {µ1, σ2

1 , µ2, σ2
2} by maximum likelihood. Additionally, we want to

know for each (training) example the distribution p(zi | xi).
To summerize the problem we have a set of hidden variables zi. Here we have for each hidden
variable an observation xi. In figure 2 there is a graphical representation of this hidden variable
model. For the training data we want a point estimate of θ and a probability distribtion p(zi | xi; θ).
So we are Bayesian only w.r.t. zi.
The (marginal) 5 log-likelihood of the observed data is:

L(θ) = log p(D | θ) =
n

∑
i

log p(xi | θ) =
n

∑
i=1

(
log ∑

zi

p(xi, zi | θ)

)
(9)

The difficulty is that we don’t know from which Gaussian z each data point was generated. This
is reflexted in the formula 9. There is a sum inside the log which complicates the maximization
procedure substantially.
However, with the Jensen inequality and an auxilary distribution q(zi) we can push the log inside

4For an exercise to the multivariate Gaussian distribution see exercise-multivariate-gaussian
5The marginalization is with respect to hidden variables zi
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the sum to get a lower bound [11]:

L(θ) = ∑
i

log p(xi | θ) (10)

= ∑
i=1

(
log ∑

zi

p(xi, zi | θ)

)
(11)

≥∑
i

∑
zi

q(zi) log
p(xi, zi | θ)

q(zi)
(12)

= ∑
i

Eq(zi)

[
log

p(xi, zi | θ)

q(zi)

]
(13)

= −∑
i
DKL (q(zi) || p(xi, zi | θ)) (14)

= L(q, θ) (15)

L(q, θ) is the variational lower bound (or evidence lower bound - ELBO). Note that L(q, θ) has
two arguments q and θ. Iteratively alternating until convergence between the maximization of one
holding the other argument fixed results in the EM-algorithm, with interation index t:

• In the E-Step we search in the distribution family q at the current position θ(t) the strongest
bound: q(t+1) ← arg maxq L(q, θ(t))

• In the M-Step we maximize for a fixed q(t+1)) w.r.t. θ: θ(t+1) ← arg maxθ L(q(t+1), θ)

The gap between the lower bound L(q, θ) and the log-likelihood L(θ) is6:

L(θ)−L(q, θ) = ∑
i

DKL (q(zi) || p(zi | xi, θ)) (16)

We provide two exercises to study the EM algorithm in detail:

• Minimalistic example of a hidden variable model which should be solved by the EM-
algorithm: exercise-simple-example-for-EM

• One dimensional Gaussian mixture model trained with the EM-Algorithm: exercise-1d-gmm-
em

Remark: If we want to estimate a probability distribution of the parameters θ, i.e. p(θ | D) we can
consider the parameter as hidden variables. So the distinction between parameters and variables
is blurred in Bayesian analysis.

IV. Bayesian Methods

Different Bayesian methods were developed to compute respectivly approximate the posterior of
equation 3 without explicitly computing the denominator. Here we focus on Monte Carlo methods
and variational methods for which black-box inferences were developed recently. For didactic
reasons, we also explain the conjugate prior method to illustrate the principle of Bayesian learning.

6see e.g. http://christianherta.de/lehre/dataScience/variational-methods/
Expectation-Maximization-variational-derivation.html
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i. Conjugate Prior

For simple models, the conjugate prior method can be used to overcome the problem for computing
the denominator of equation 3: For the prior p(θ) and the likelihood p(D | θ) are such probability
functions selected such that the posterior has the same functional form as the prior (same family
of functions). To illustrate this, we consider again n Bernoulli trials. So for the likelihood we have
the Binominal distribution, see equation 8. If we use for the prior probability density function
(pdf) the Beta distribution then the posterior is again a Beta distribution.
The Beta distribution is

Beta(α, β) = p(θ | α, β) =
θα−1(1− θ)β−1∫ 1

0 uα−1(1− u)β−1 du
(17)

with θ ∈ [0, 1] and the shape parameters α > 0, β > 0. Note that the denominator only normalizes
the pdf. Now we neglect all normalizing constants to compute the (unnormalized) posterior. The
product of the (unnormalized) prior and the (unnormalized) likelihood is

p(θ | n, k) ∝ θk(1− θ)n−kθα−1(1− θ)β−1 = θk+α−1(1− θ)n−k+β−1 (18)

Comparing the right side of equation 18 with the nominator of equation 17 we see that the
functional form is identical. Therefore we can conclude that the posterior is also a Beta distribution
Beta(α′, β′) with parameters α′ = α + k and β′ = β + n− k.

The conjugate prior method is used, e.g. for sensor fusion and in the Kalman Filter7 (to
combine the measurement with the motion dynamics/kinematics). We provide an exercise for
sensor fusion and Kalman Filter: exercise-sensorfusion-and-kalman-filter-1d.

As already stated, the conjugate prior method can only applied to simple problems with
standard probability density functions. To allow arbirary probability densities we need more
flexible methods. The first one we consider are Monte Carlo methods.

ii. Monte Carlo Methods

Monte Carlo (MC) methods are a general approach to get approximations for numerical results.
For example, Monte Carlo methods can be used to approximate integrals (Monte Carlo integra-
tion). Here we consider integrals witch contain a factor p(x) in the integrand, as for computing
expectations or marginalization. If we can draw m samples xi from a probability distribution p(x)
(notated as xi ∼ p(x)) we can get an approximation by the crude MC estimator

F(x) =
∫

p(x) f (x)dx ≈
m

∑
i=1

f (xi) = F̂(x). (19)

See also exercise-sampling-crude-monte-carlo-estimator.
But how to obtain samples from p(x)? If x is a scalar and we know the cumulative distribution
function (cdf) c(x) =

∫ x
−∞ p(x′)dx′ we can sample by inverse transform sampling: First we draw

samples from a uniform distribution uniform(0, 1) by a random number generator. Then these
samples are maped by the inverse cdf, see exercise exercise-sampling-inverse-transform..

For different standard multivariate probability distributions there are several methods for
sampling, see e.g. [12, chapter 7]. Many software packages (e.g. numpy.random) implement such
sampling for standard probability distributions out-of-the-box. Such sampling methods can also
be used for other applications. We provide exercises for the following sampling methods:

7For an derivation of the Kalman Filter in the simple 1d case see e.g. http://christianherta.de/lehre/
localization/Kalman-Filter-1D.html
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• In rejection sampling the samples are drawn from a similar probability distribution q(x). Some
of the samples are rejected to get samples from p(x) as result, see exercise-sampling-rejection.

• In importance sampling the samples are also drawn from similar distribution q(x). These sam-
ples are weighted by the ratio p(x)/q(x), e.g. to correct the Monte Carlo integration, see exer-
cise https://www.deep-teaching.org/notebooks/monte-carlo-simulation/sampling/exercise-sampling-importanceexercises-
sampling-importance.

ii.1 Gradient of a MC expectation

Often the gradient of an expectation is needed, e.g. for optimization by gradient descent, see
section VI for examples. By algebraic manipulation the gradient of an expectation can be expressed
by the expectation of a gradient:

∇wEqw(x) [ f (x)] = Eqw(x) [ f (x)∇w log qw(x)]

The expectation on the right hand side can be approximated by Monte Carlo if we can sample
from xi ∼ qw(x). That is the so-called score function estimator trick.

TODO exercise!!

ii.2 Variance reduction

Monte Carlo methods give an estimate and not an exact solution. The estimated value should be
as close as possible to the true value. So the estimate should have low variance and should be
unbiased. There are different methods to reduce the variance of an MC-estimator. Often, only
by such variance reduction, Monte-Carlo becomes practical. For some of the variance reduction
techniques we provide exercises:

• Control Variates 8: exercise-variance-reduction-by-control-variates
• Reparametrization: exercise-variance-reduction-by-reparametrization
• Rao-Blackwellization: exercise-variance-reduction-by-rao-blackwellization

iii. Markov Chain Monte Carlo (MCMC)

In principle, the normalized posterior of equation 3 can be approximated with Monte Carlo
integration by an MC-estimate of p(D) =

∫
p(θ)p(D | θ)dθ. The variance of such an estimator

would be very high except θ is very low dimensional. So this method can not be used in practice.
Note that if the probability space is high dimensional θ then in most regions is p(θ) ≈ 0. If we
would for example use importance sampling, e.g. by direct sample from a uniform distribution
and weighting then most importance weights would be zero. So the effective number of samples
would be extremly low. This results in a very high variance of the estimator.
Therefore we want to draw only samples from regions where p(θ) is substantially different from
zero. If we have such a sample θ(t) at iteration step t then is highly probable that nearby values of
θ(t) have also p(.) substantially different from zero. The idea of MCMC is now to perturbe the
current sample θ(t) by a small δθ(t). Such, we get a candidate θc(t + 1) = θ(t) + δθ(t). We accept
the move only with an acceptance probability pac [] given by

pac = min

1,
p
(

θ(t)
)

p
(

θ
(t+1)
c | θ(t)

)
p
(

θ
(t+1)
c

)
p
(

θ(t) | θ
(t+1)
c

)
 , (20)

8In the context of reinforcement learning this is known as baseline.
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i.e. with pac we accept the move and with 1− pac we stay at the value θ(t):

θ(t+1) =

{
θ
(t+1)
c with probability pac

θ(t) with probability 1− pac

The new state θ at t + 1 depends only on the previous state at t and is independent of the states
previous to t − 1. Therefore the Markov property θ(t+1) ⊥ θ(t−1) | x(t) is satisfied and such a
sampling is called Markov Chain Monte Carlo. State-of-the-art of MCMC is the Nuts sampler [6]
which is an improvement of Hamiltonian MCMC [10].

TODO: exercise-sampling-direct-and-simple-MCMC.ipynb

iv. Variational Methods

A drawback of MCMC is that it is not scalable to large data sets or models with many parameters.
For such models, MCMC is typically very slow, and we need many samples. Therefore, it can not
be used in practice. Alternatives are variational methods to overcome these issues.

The idea of variational methods is to approximate p(θ | D) with a so-called variational
distribution qw(θ). qw(θ) is a distribution in a parametrized family, i.e., we chose a standard
probability distribution with parameters ws. The parameters w are called variational parameters.
Then, we must find the w’s which approximate the posterior best by an optimization procedure
like stochastic gradient descent.
As optimization-objective (loss) we use the KL-Divergence between qw(θ) and p(θ | D), i.e. the
optimal parameters are w∗ = arg minwDKL (qw(θ) || p(θ | D)).

DKL (qw(θ) || p(θ | D)) =
∫

Θ
qw(θ) log

qw(θ)

p(D | θ)p(θ)
dθ +

∫
Θ

qw(θ) log p(D)dθ (21)

=
∫

Θ
qw(θ) log

qw(θ)

p(θ)
dθ −

∫
Θ

qw(θ) log p(D | θ)dθ + log p(D) (22)

= DKL (qw(θ) || p(θ))−Eqw(θ) [log p(D | θ)] + const. (23)

Note that log p(D) does not depend on w which prevents us from the difficulty to compute the
“normalizer” of the posterior (denominator of equation 3). qw∗(θ) is an approximation of p(θ | D).
Remember that we are using a known parametric distribution for qw(θ), so we have a normalized
result.

iv.1 Mean-field approximation

For a directed graphical model with many nodes, the probability distribution for each node j
is described by a known parametric distribution qw(θj) and the total probability distributions
factorizes9:

Q =

{
qw | qw(θ) = ∏

j
qw(j)(θj)

}
This factorization approach is called mean-field approximation. The optimization can be done by
coordinate descent, i.e. by a loop over the optimation w.r.t. to each qw(j)(θj) until convergence.

We provide the following exercises for studying:

9In general the probability can factorizes in blocks, e.g. a block for each node, or total factorization for each component
θi . This can be expressed by merging or spitting of nodes in the graphical model.
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def model(X):
mu = pyro.sample(’mu’, dist.Uniform(-10., 10.))
return pyro.sample(’gaussian_data ’, dist.Normal(mu , 1.), obs=X)

def guide(X):
mu_loc = pyro.param(’guide_mu_mean ’, torch.randn((1)))
mu_scale = pyro.param(’guide_mu_scale ’, torch.ones(1),

constraint=constraints.positive)
pyro.sample(’mu’, dist.Normal(mu_loc , mu_scale))

Figure 3: Example of a simple Gaussian model and a guide in the probabilistic programming library pyro [2]. In
the definition of the model the prior p(µ) = uniform(-10,10) is used. The guide function corresponds to a
variational distribution for the parameter pw(µ) = N (w0, w2

1) with w0 = ’guide_mu_mean’ and w1 =
’guide_mu_scale’.

• exercise-variational-mean-field-approximation-for-a-simple-gaussian - univariate Gaussian
via variational mean field.
• exercise-variational-EM-bayesian-linear-regression Bayesian univariate linear regression

model via mean field approximation and variational expectation maximization (for the
data noise a point estimate should be used).

V. Probabilistic programming

Probabilistic programming allows defining models similar to (directed) graphical models pro-
grammatically. The modeling in probabilistic programming is more powerful because the model
can contain control structures such as loops and if-statements. It can be show, that every directed
graphical model can be expressed by a loop-free probabilistic program [4].
Inference (including learning) is based on black-box methods based on MC sampling or variational
inference [14, 13]10. Therefore, the programmer can focus primarily on modeling. Depending
on the software packages the inference is entirely automatic, or it requires strong background
knowledge for tuning the inference. Such tuning is especially necessary for a large data set and
big models.

The source code for a simple Gaussian model with pyro [2] and the corresponding variational
distribution model is show in figure 3.

We provide the following exercises for probabilistic programming:

• exercise-pyro-simple-gaussian
• exercise-pymc3-examples
• exercise-pymc3-bundesliga-predictor
• exercise-pymc3-ranking

VI. Bayesian Deep Learning

In this section, we give two non-trivial examples from deep learning for which we provide exercises.
In both examples, the neural networks are trained by variational methods lower. Nevertheless,
Monte-Carlo estimation is used for approximate the gradient of the expectations of the lower
bound.

10Variational methods, as well as the Nuts/Hamiltonian-MC sampler, need gradient information, therefore, is probabilis-
tic programming often implemented on top of deep learning libraries which support (reverse) automatic differentiation [1].
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i. Variational Autoencoder

Variational Autoencoders [7] are generative models which can learn complicated probability
distributions. Variational autoencoder are hidden variable models. So the terminology and
the graphical model 11 are analog to section iv. The variational autoencoder is trained by the
auto-encoding variational bayes (AEVB) algorithm. In contrast to the EM-algorithm can AEVB be
used if the integral of the marginal likelihood

∫
p(Z | θ)p(X = xi | Z; θ)dZ is intractable [7]. An

other advantage is, that AEVB can be trained by minibatches for large data sets. qw(Z | xi) is
the variational approximation of p(Z | xi; θ). Note that the approximation depends explicitly on
xi

12. qw(Z | xi) is implemented by an probabilistic encoder neural network 13. The weights and
biases of the encoder neual network are the variational parameters w. In the training phase the
probabilistic encoder maps each input xi to a probabilistic (variational) approximation qw(Z | xi)
of the true posterior p(Z | xi; θ). In deep learning terminology the hidden state distribution
p(Z | xi; θ) is a probabilistic representation of the input xi. xi is encoded “truely” by p(Z | xi, θ)
approximated by qw(Z | xi).

Additionally, there is a second neural network that acts as a probabilistic decoder. The task
of the decoder is to reconstruct the input xi from a sample zi ∼ qw(Z | xi), i.e. the decoder
implements p(xi | Z; θ)
For training, the (negative) evidence lower bound as cost function used 14:

L(w, Z) = ∑
i

(
Eqw(Z|xi)

[log p(xi | Z; θ)]− DKL[qw(Z | xi) || p(Z)]
)

(24)

The first term on the right hand side is a measure of the reconstruction error. The second term
acts as a constraint (regularization), the representations of the training data should be similar to
samples from a prior. As prior we chose typically a centered isotropic multivariate Gaussian. That
is a Gaussian with zero mean-vector and diagonal covariance matrix N (0, 1) with entries 1. For
optimization w.r.t. the variational parameters w we must compute the gradient of equation 24.
The second term can be integrated analytically for a Gaussian prior and Gaussian conditionals
p(xi | Z; θ) [7]. The closed form allows directly automatic differentiation for optimization.
The gradient of the first term can be approximated by Monte Carlo estimation, see section ii.1.
However, the score function estimator has to high variance and can therefore not be used. This
is solved by the reparametrization technique for variance reduction (see section ii.2) . With
reparametrization we can also backprop through the encoder decoder network. For details see [7]
and our exercise exercise-variational-autoencoder

A learned auto-encoder can generate as many samples as wanted. First, a sample is drawn
from the prior p(Z), i.e., the multivariate Gaussian with diagonal covariance matrix N (0, 1). The
decoder then maps the Gaussian sample to a sample from the learned distribution.

ii. Bayesian Neural Networks

Neural networks are typically learned by minimizing a cost function, e.g., the cross-entropy loss
with additional regularization. This is equivalent to a MAP point estimate, see section iii.
In Bayesian Neural Networks the weights are represented by probability density functions [5].
Typically the mean-field approximation (see section iv.1) is used for Bayesian Neural networks.

11There is also an arrow from θ to Zi .
12So we need only a global set of variational parameters which can be used for each data point i. In the literature this is

also called amortization.
13Note that the mean-field approximation is not used and the approximation is therefore not necessarily factorial.
14The reader is strongly encourage to compare this with formula 14 and to derive the equivalence.

12

https://www.deep-teaching.org/notebooks/variational/exercise-variational-autoencoder


Berliner Schriften zu Data Science (Berlin Journal of Data Science) • Vol. I, No. 1

The complete probability distribution factorizes such that each weight corresponds to a univariate
Gaussian 15. Each weight θj has two (variational) parameters wj the mean and the variance
of the Gaussian wj = {muj, σ2

j }, i.e. p(θ) ≈ ∏j qwj(θj) with Gaussians qwj(θj) = N (µj, σ2
j ).

Such networks can be trained by backprop for learning of the variational parameters wj. As
cost the lower bound (analog to equation 24) can be used. For details see [3] and our exercise
exercise-bayesian-by-backprop.

VII. Conclusion and Outlook

In the paper we gave an guide to learn Bayesian methods with a focus on machine and deep
learning. Mainly, we provide a set of different exercises for studying the material in detail. In the
future, we want to review, improve and extend the exercises and provide more exercises related to
Bayesian learning and the corresponding fundaments.

Most of the exercises were developed in the project Deep.Teaching. The project Deep.Teaching
is funded by the BMBF, project number 01IS17056.
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